pytorch入门例子3:模型训练和测试
CIFAR10训练集50,000
CIFAR10测试集10,000
图片+标签
像下面的neural network,不用GPU也可以很好地完成训练。这个模型和之前的例子类似。
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net()
完成训练之后,可以将模型状态保存,以备下一次直接使用。
PATH = './cifar_net.pth' torch.save(net.state_dict(), PATH)
读取之前保存的模型状态,并测试新数据。
net = Net() net.load_state_dict(torch.load(PATH)) outputs = net(new_images) _, predicted = torch.max(outputs, 1) # 取最大值对应的label
- Blog Link: http://conxz.net/2020/01/10/pytorch-example-3/
- Copyright Declaration: The author owns the copyright (CC BY-NC-ND 4.0).